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We are proposing a method of analysis of deformable systems based on 

looking upon the deformation as a process, Time is regarded as a para- 

meter which determines the development of the deformation. The integra- 

tion with respect to time is carried out on a high-speed electronic 

digital computer. The boundary value part of the problem is solved by 

the Galerkin method. 

(Rece ived July I, 2963) 

(MOSCOW) 

In this approach there is no need to solve nonlinear equations. The 

values of the parameters from the preceding step are substituted into 

them. This procedure permits a considerable increase in the number of 

parameters which are being varied and does not make the solution of non- 

linear problems any more complicated than that of linear ones. 

As an example, we consider the problem of stability of a bar beyond 

the elastic limit. 

1. A method of analysis of deformable systems called the variational 

step method, or simply the step method, is proposed in [II. 

The deformation of a system is looked upon as a process, regardless 

of the fast or slow rate at which the external forces may be changing. 
Time is introduced as an independent variable and the following equa- 

tions of motion are formed: 

(1. .I) 
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azw at,, %,u - - !5_ - p at2 + ax + ay f a2 - 0 

Stresses are given as functions of deformations by the relations of 

elasticity or plasticity which we symbolically write down in the form 

CT = u (E,) (1.2) 

Deformations, in turn, are determined by the relations 

e = e (u, v, w) (1.3) 

which, generally speaking, are nonlinear. 

\Ye approximate the displacements u, v and w by the functions which 

satisfy the boundary conditions 

u = 0, (5, y, 4 + A,u, (2,. y, 4 + . . . + Amum (z, y, 2) 

v = &VI b, y, 4 + &, (z, y, 4 + . . . + &,A,, (2, y, 2) (1.4) 

w = Cl% (G y9 2) + C,w, (G Y7 4 + - l - + Gwnl (z, y, 4 

where Ai, Bi and Ci are time-dependent parameters. 

Substituting u, v and w into equations (1.1) to (1.3) and using the 

Galerkin method we obtain systems of ordinary differential equations 

;i, + a12k’, + aIs& + . . . + L1 (Ai, Bi, Ci) = 0 

azlA’, + & + a,,& + . . . + La (Ai, Bi, Ci) = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B, + b&z + bl$, + s - - + Ml (Ai, Bi, Ci) = 0 

barBI + Es + b&a + * - a + Ms(AiyBiy Ci) = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Cl + Cl+?2 + C13c3 + . m . $ IV, (Ai, Bi, Ci) = 0 
C,lCl + C, + C,,c“s + s s e + N, (Ai, Bi, Ci) = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(1.5) 

If the functions Ui, vi and wi are orthogonal, equations (1.5) are 
simplified and take the form 

A, +L,(Ai, Bi, Ci) = 0, Ai +L,(Aiy Bi, Ci) = 0, s . . 
& + Ml (Ai,Bi,Ci) = 0, B, + M,(Ai,Bi, Ci) = 0, a s. 
6-1 + N, (Ai,Bi,Ci) = 0, 

(1.6) 
c', + N,(AiyBi, CJ = 0, s a l 
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Here ‘i, M, and ‘i are quantities which 
Bi and Ci. 

System (1.6) is integrated step-by-step 

depend on the parameters Ai, 

on a high-speed electronic __ 
digital computer. The quantities L,, Mi and Ni are expressed in terms 
of Ai, Bi and Ci of the preceding step by a successive transition from 
equations (1.4) to equations (1.3), (1.2) and (1.6). As a result of 
integration we obtain displacements, stresses and deformations as func- 
tions of time. It is assumed that the functional dependence of forces 
upon time is given. In particular, if a case of static loading is con- 
sidered it can be assumed that forces change proportionally to time and 
a sufficiently small coefficient of proportionality should be chosen. 

Rapid variations of forces or sharp changes in deflections in con- 
nection with loss of stability must give rise to damped oscillations in 
the system. A quantitative estimate of the damping can be obtained by 
introducing terms whidh contain the rates of deformation into equations 
(1.2). For that purpose we have to make use of one of the hypotheses 
concerning the properties of the material. ‘Ibe expxessions for Li, df7; 
and Ni will then contain not onfy the parameters Ai, Bi and Ci, but also 
their first derivatives. 

If damping is not taken into consideration the picture of deformation 
may be distorted by undamped oscillations which hamper the analysis of 
the computation results. Consequently, for the sake of clarity it is 
sometimes expedient deliberately to introduce linear damping directly 
into equations (1.6) in the following form: 

A, + UJ, + Li = 0, A, + a,& + Lz = 0, . . . 

B, + B,B, + Ml=: 0, B, Jr #i,B,+ M@= 0, * * . (4.7) 

2, i- r$‘l -+- N, = 0, C2 -+ TZf?% -j- N, = 0, * . i 

The coefficients aI, as, . . . . PI, p2, .._, yl, yz, . . . must not be 
chosen too large, so that the motian retains the oscillatory character, 
and not too small, so that the damping is sufficiently noticeable. 

The simplest way to resolve this question is to linearize the ex- 
pressions for L,, L,, . . ., hiI, -*. and consider equations (1.7) as in- 
dependent. 

If loading is taking place at a slow rate, one can neglect the 
inertia forces, discard the second derivatives of the parameters A,, A,, 
. ..) B 1, .I. and consider the system to be viscously deformable. Then 
it is only necessary to coordinate the increment of the integration 
step with the values of the coefficients al, u2, . . . . pl, &, . . . . ytl 

Y2’ *a* 
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Generally speaking, the increment At of the integration step must in 

any case be essentially smaller than the period of the natural oscilla- 

tions corresponding to the highest partial frequency. This, by the way, 

imposes a limitation on the number of parameters which may be varied. 

When their number is large the highest partial frequency increases con- 

siderably, so that a very small increment of the time step must be 

chosen. As a result, the computer time is increased. 

If we decide not to consider the process as taking place in time and 

instead go into the usual analysis of the forms of equilibrium, then in- 

stead of the differential equations (1.7) we obtain the following system 

L, (Ai, &, Ci) = 0, La (Ai, Bi, Ci) = 0, . . . 

Jf, (Ai, Bi, Cd = 0, Mz (Ai, Bi, Ci) = 0, . . . 

N, (Ai, Bi, G) = 0, N, (Ai, Bi, Ci) = 0, e l v (1.8) 

It has to be solved for the parameters Ai, Ri and Ci which are being 

varied. As a rule, for nonlinear relations and a large number of para- 

meters this cannot be accomplished. However, in the step-by-step method 

one simply has to substitute the values of Ai, R,, Ci of the preceding 

step into the expressions for L,, L,, . . . which is always easily done. 

'Ihe merits of the step-by-step method lie in the fact that in it the 

borderline between the linear and nonlinear systems, the small and large 

displacements, the statics and dynamics, is completely wiped away and 

there is almost no difference between the problems of elasticity and 

plasticity. A new possibility of solving problems in creep and plasti- 

city which are related to the history of loading thus presents itself. 

Unlike the standard methods, here the number of parameters being varied 

can be increased considerably. To that end all the operations of sub- 

stitution in the transition from equations (1.3) to equations (1.2) and 

further, to equations (l.l), must be performed on a computer. 

2. let US consider the problem of stability of a bar (Fig. 1) com- 

pressed beyond the limit of elastic deformations. 

This problem, as any other related to stability of plastically de- 

formable systems, first of all needs a formulation of underlying 

principles on which the analysis is based. It is generally understood 

that stability of a system is a property of returning to its initial 

state after the causes which have produced relatively small disturbances 

are removed. It can be stated in advance that whenever plastic deforma- 

tions are present the system, generally speaking, does not possess that 

property. 

If in a straight axially compressed bar there arise no plastic de- 

formations, then one can always select a sufficiently small deflection 
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such that the resulting sum of bendin g and compression stresses will not 
exceed the elastic limit. At the same time, a somewhat larger deflection 
may cause residual deformations, although the axial force remains the 
same, SO that the bar will not return into its initial state. Tf a 

straight bar is compressed beyond the 

\, 
elastic limit then for any deflection, no 

\** +F& 

~ 

matter how small, it will not regain its 

2 
origina shape when released. 

"M It is clear that the problem of sta- 

l;;prds Q 
bility of a plastically deformable system 

requires a special approach. Here the de- 

!?dg M+dM cisive factor becomes the history of load- 

WfJ ing and history of tests performed (de- 

N+dN viations of the system from the initial 
X X equilibrium configuration). 'he correct 

Fig. 1. approach here, and it seems the only 

correct approach, is to consider the loss 

of stability of a plastically deformable system not as a set of possible 

forms of equilibria, but as a process. 'The step-by-step method permits 

an investigation of this kind to be carried out to completion. 

'thus, we have a two-hinged bar (Fig. 1). 

The vertical and horizontal components of the internal forces in a 

cross-section of the bar (Fig. 1) are 

X = Ncos6-Qsin6, Y = iVsin6+ Qcos6 i? 

where 6 is the angle of rotation of the section. 

We do not impose any limitations on the angle 6. 

Then we form the equations of motion 

CA.4 a 
PF@ f-$;;Wos+ - Qsin6)= -qsin6 

PF~+&, (N sin 6 + Q cos S) = q cos 6 
Fig. 2. 

(Q = ~~~/~s) (2-U 

Let us consider the closed polygon AA’B’B (Fig, 2). Setting the sums 

of projections of the segments on the z- and x-axes equal to zero we 

obtain 

(1 - 
aw 

s)sin@- == 0, (1 - e) cos 6 - 1 - g = 0 

Hence 
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sin@= +$-, ~0~6=+(l+g), e=l--R 

R = 1/p + 2)” + ($f-)” 
(2.2) 

For the curvature K = a??,/& we obtain 

cos6 CPW 
+ 

sin4 #la 
x = R&L 

-- 
R ass (2.31 

The stresses are determined in terms of K and E by means of the CM- 
pression diagram, and through stresses we obtain forces and moments 

N = adF, M = 
s 

azdF 
F 

(2.4) 

Let us assume 

the shorter side 

less form. Thus 

u = hUO, 

Q = BFMo’, 

that the cross-section has the form of a rectangle with 

h and let us rewrite the equations in the dimension- 

w=hwa* s = a& N =EFN,, M = ERM@ 

t=Ti v’ zhp 
F, q=q, E_&(,?, 

> c&J =: (‘) 

Equations (2.1) through (2.3) then become 

u. + (N, cos 6 - MO’ sin 6)’ = - q. sin fi 

‘b,, + (N, sin tt + M,,’ cos 6)’ = q. cos 6 (2.5) 

sin@ =-+-$, cos~=~ 1+ 
( -+4 , 1 

e=1-RR, (2.6) 

NOW we introduce the designation q = z/h; for NO and MO we obtain 

+'I¶ +'I* 

NO== \ -+, 
-%* 

MO=+! + rldll (2.9) 
-% 

We assume that 

we= 2 A, sin nn5, zzg = B@ (1- 8) + 2 B, sinmE (2.10) 
1.2,3... 1. 2, 3. . . 

where A,, and B, depend on dimensionless time. 
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Let us substitute u0 and wO into equations (2.1) and (2.8). Rnen 
from the compression diagram find o and by integration of (2.9) deter- 
mine N,, and I?, for a number of cross-sections. 

Now substitute N,, I!!,, u0 and w0 into the equations of motion (2.5) 
We use the Galerkin method. rlultiplying both equations by sin rifj and 
integrating from 0 to 1, we obtain 

1 

P A, sin nng sin niEdE $ 
0 

+ \ (iV, sin 18 + MO’ co.3 G)’ sin ni%d% = 5 go eos 6 sin niE;d$ 
0 0 

In order to avoid differentiating the functions No and &, which are 
determined for a number of cross-sections, we take the second integral 
by parts twice. 

As a result we obtain 

where 

~~=25[(4.fZillM,,aos*sinni5+ni(N.+M,$Bxisinaeosnil]df 
0 

I (2.12) 

Pi = 2 
Bi 

- (go + ~~~~~~~ sin 6 sin niT; + 

;niiiY,i- M+x) cos 6 cos GE-j d$ - -+ b, - -+ &Bo} 

A linear damping with arbitrary parameters oi and pi has been intro- 
duced into expressions (2.11). ‘Ihe index i takes the values 1, 2,. . v ,m, 
where m is the index of the last term in expansions (2.10). The equa- 
tions are connected through the quantities 0; and Fi which depend on 
A,, A,, . . ., B,, B,, . . . . 

We will assume that the bar is compressed in a rigid hydraulic press 
and that its ends are brought together according to a given law 
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The axial force on the upper end of the bar obviously equals 

P = N cos 6 - a; sin 6 1 
s=Cl 

or in dimensionless form 

P,, = gF = 1 N,, cos 6 - MO’ sin 6 ItTo 

1279 

(2.13) 

As the end sections are brought together, the 

Fig. 3. 
force P, first increases and then, when notice- 

able transverse displacements are formed, it de- 

creases. As is usually done in testing, we will 

take the maximum value of the force to be the index of stability. 'lhis 

force can be called critical, not in the sense of bifurcation of the 

forms of equilibrium but rather in the sense of carrying capacity, which 

essentially is what we require. 

In order to make the following computations more concrete let us 

take the compression diagram which is schematically given in the form 

of two straight lines (Fig. 3): 

CJ = Ee, wJT=D(e-;) 

and let us introduce the dimensionless parameters 

a=QT 
E’ 

b=$ 

Then the equations of the sections of diagram become 

+ = e, 
G 
- = a (1 - b) -j- be E 

We choose the quantities a and b and the ratio h/l. Then we introduce 

the initial values of the coefficients Ai and Ri. 'lhe axial displacement 

u is assumed to be initially equal to zero. Therefore B, = R, = . . . = 0. 

'lhe initial deflection w0 is given by the parameters Al,,, A,,, . . . . 
In the computations we have considered only the influence of Alo and 

A 
20' i.e. we have assumed that the bar could be initially bent in the 

shape of one or two half-waves. 'lhe initial values of the following 

terms of the expansion were in all cases assumed equal to zero. 

Altogether 16 

putation 

varying parameters have been introduced into the com- 

B,, B,, . . ., B,, A,, A,, . . .t A, 

We divide the bar into several portions and for each section from 
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formulas (2.10) we compute the values of w', u', w", u‘, hK, sin 6, 

cos 6 and E with the initial values of A,, and A,,. 

As the above operation is carried out the first time, the obtained 

value of the initial curvature is recorded and in the subsequent steps 

is subtracted from the new values of hK each time. 'Ihis is necessary 
since the bending moment is determined by the difference in curvature 

(the new and the initial one). 

'Ihen the deformation at a number of points in each section is com- 

puted 

a,= &+hX -+,,hXll 

Each section was vertically divided into 10 layers and in each layer 

the value of E, was computed and stored in the memory core, to be used 

in the next time step. 

Using the value of fZ we find 

the stresses from the compression 

diagram. In doing it the computer 

program uses a logical comparison 

with the preceding step, so that 

the conditions of loading and un- 

loading can be distinguished. 

Integrating (2.9), we obtain 

the values of No and dl, for each 

cross-section. 

We substitute N, and M,, into 

expressions (2.12) and for i = 1, 

2, 3 . . . 8 we carry out the inte- 

gration with respect to c. Then 

from equations (Z._ll) we find the 

increments bAi, A%,, bA,, bBi. 

These increments are-added to the 

preceding values of Ai, %i, Ai 

and Ri and the cycle is repeated. 

It was assumed in the computa- 

tions that the end sections are 

brought together at a constant 

rate and hence 

Pig. 4. 

Be = Kz (2.14) 
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of some 

Ffgure 4 shows the plot of the force P, Bersus the reletWe shorten- 

ing of the distance between the end8 of the bar Bg with the following 

parameters: 

3- 
a== --~o.oor, &=rE_ ~ E “- 00% 

IL is assumed that the bar has the initial deflection af the form of 

a sinusoidal half-wavn with the relative amplitude 

A ~~=Wmax/h=O.l 

The vsrue of x in csxpressi~l% (.%.f4) is ~~~~~E~ to be was 

0 0.04 808 

Fig. 5. Fig. 6. 

Tlth such a rate of shortenf~~ of the distance between the end 

sections, the plastic deformations of a straight bar appear approxi- 

mately in two perioda of the natural transverse oscillations of the 

fundamental tone. 

%tmber 1 in Fig* 4 design&es the aomp-essim diagram in the coordi- 
nates B,, P,. Curves 2, 3 and 4 differ by the oalne of the arbitraril~r 

introduced coefficients of linear damping ai. FQF the rather high rate 

of loading assumed above, the influence of the coefficient of damping 



1282 V.I. Feodos ‘ev 

upon the value of the critical force is quite pronounced. If we take 
o. = 0 (Curve Z), the picture of the decrease of loading is very much 
distorted by undamped oscillations. In the further plots of P, = f(B,) 

the assumption was a; = 0.01. In the investigation of the functional de- 

pendence of PBax upon various parameters, the linear damping was assumed 
equal to zero so as to obtain a lower value for P max* 

Figure 5 shows the variation of the shape of Curve PO = f(R,) for 

different values of the initial deflection Al0 of the same bar. Figure 

6 shows the dependence of Pmax on AlO. 

Here, in determining P max’ the rate of loading was 10 times lower 
than that with which the curves in Fig. 5 were constructed, i.e. we had 

K = 10-s. 

It is evident from the curves shown that the initial deflection is 

the determining factor in the carrying capacity of a bar. 

In principle, the question of what the computer would give if no 

initial deflection of the bar is introduced, is of some importance. 

It has become evident that the perturbations of the algorithm (step- 

by-step variation of the parameters, rounding off of numbers) have 

turned out to be sufficient to have the loss of carrying capacity re- 

corded at a certain value of the shortening of distance between the end 

sections. This can be observed, for instance, from the curves of Fig. 5. 

Figure 7 shows the dependence of P nax on a = a,./E for several values 

of h/l. As should be expected, for every value of h/l there exists a 

value of UI beyond which Pmax does not change with increasing uT. 

insofar as the loss of carrying capacity takes place within the elastic 

region. 

It is essential to point out that even with the very low rate of 

loading selected (K = 10~~). the loss of carrying capacity occurred with 

a force considerably higher than the Euler’s force. 

For a longer bar this discrepancy, naturally, becomes more pronounced. 

since the period of natural oscillations is increased and the rate of 

loading remains unchanged. 

The influence of the loading rate is illustrated by the curves shown 

in Fig. 8. In both cases of loading the bar has the initial deflection 

AlO 
= 0.1 and the ratio h/l = 0.05. The rate at which the end sections 

are brought together in one bar is 10 times higher than in the other. 

As a result P fix has increased considerably and, due to the longitudinal 

inertia forces, the loading curve has risen above the values given by 

the compression diagram. 



A step-by-step ciethod to the analysis of stability 1283 

A c~mpaFis#n of loadfng curves W&S conducted fear #XV.3 Identical bars 
with different shapes oi the fnitfal defiectlolr curves, One bar was 

initially bent in tke shape of a 
sinusoidal half-wave, the other in LWO 

half-waves. The amplitudes of the de- Fgtu3 
flections were the same. The value of 
P IIlex for the bar bent In two half-waves 
turn& out to be §~~~~~~~i~~~~ hfgher 
than for the bar bent in one half-wave, 

Fig* 7. Fig. 8. 

As the deflections Increased, the highest amplitude in both cases was 

attained by the form of bending in one half-wave, which should ba ex- 
pected. 

I. Fwdos’ ev, v, r* , Db ~d~~rn spawbe resheniia ~e~~~e~ny~b zadach 
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